Регенерация костной ткани при переломах челюстей

Регенерация костной ткани при переломах челюстей thumbnail

Снижение частоты осложнений у больных с переломами нижней челюсти и сокращение сроков их нетрудоспособности — серьезная медико-социальная задача, решение которой теснейшим образом связано с репаративной регенерацией кости. Этот процесс зависит от генетического и эпигенетического факторов.

Известно, что скорость регенерации тканей генетически очень жестко лимитирована в небольших пределах, измеряемых часами и даже минутами. Так, для синтеза молекулы коллагена требуется от 4 до 11 ч. Если сборка молекулы длится <4 ч, она будет неполноценной. Такая молекула либо не выйдет из клетки и будет в ней демонтирована, либо будет сейчас же разрушена, как только появится во внеклеточном пространстве, тканевыми протеазами. На современном уровне развития науки невозможно выйти за пределы, разрешенные генотипом. Следовательно, не стоит и ставить заведомо невыполнимую задачу влияния на него с целью ускорения регенерации.

Другое дело, если мы будем воздействовать на эпигенетический компонент, стремясь создать идеальные условия для метаболических процессов в клетке. Это позволит клетке синтезировать необходимые вещества в максимально короткие сроки, заложенные в генотипе. Эпигенетический фактор слагается из многих составляющих: гормональный фон, обеспеченность клеток строительным материалом, витаминами, кислородом, интенсивность резорбции кости, прочность иммобилизации отломков и пр. Эпигенетический компонент весьма вариабелен и вполне доступен для воздействия. Следовательно, можно считать оправданной и реальной задачу создания такого эпигенетического компонента, который способствовал бы максимальной реализации генетических потенций.

В сущности, это — задача, которую мы пытаемся решить на протяжении многих поколений. Сложность ее решения связана с тем, что отсутствуют знания по целому ряду ключевых моментов: 1) до сих пор неизвестны все составляющие эпигенетического фактора; 2) сама генетическая программа не идентична у разных индивидов; 3) разные ткани обладают разной генетической программой; 4) неизвестен оптимум эпигенетического компонента на протяжении всего периода консолидации отломков.

Формирование костной мозоли представляет собой совокупность процессов роста и развития, которые, как известно, исключают друг друга [4]. В костной мозоли одновременно протекают оба процесса, но в разных клеточных популяциях, причем в каждый определенный момент преобладает тот или иной процесс и каждому из них соответствует свой эпигенетический компонент, составляющие которого призваны оптимизировать каждую стадию процесса регенерации.

Идеально оптимизировать все стадии регенерации невозможно. Можно лишь пытаться создать оптимум для той стадии регенерации, в которой находится максимум структур в данное конкретное время. На наш взгляд, от существующей практики назначения 1—2 стимуляторов остеогенеза (гормон, витамин, метилурацил — МУ и пр.) на весь период сращения сломанной кости следует отказаться как от нецелесообразной, а то и просто вредной.

Положительные результаты, полученные отдельными исследователями от применения того или иного препарата, объясняются тем, что в какой-то момент применение этого препарата совпадает с соответствующей фазой регенерации. Самые лучшие результаты ограничиваются сомнительным сокращением срока нетрудоспособности — максимум, на 1 нед.

Таким образом, от нестадийного лечения следует отказаться как от неоправдавшего себя. Необходима целенаправленная разработка стадийных схем лечения, успех которой зависит от знания протяженности и очередности стадий репаративной регенерации кости.

Данные литературы и наш опыт позволяют выделить 5 стадий репаративной регенерации кости [1, 3, 7]: I стадия — 1—2 дня после перелома — деструктивно-резорбтивная; II стадия — 3—8 дней — сочетание дегенеративно-воспалительной и пролиферативной стадий; III стадия — 9—14 дней — синтетическая стадия; IV стадия — 15—21 день — стадия ремоделирования; V стадия — 22—28 дней — стадия созревания костной мозоли.

Исследованиями последних лет показана прямая зависимость интенсивности регенерации от I, пусковой стадии — деструктивно-резорбтивной [2, 6]. Постоянная, точно дозированная микродеструкция кости, лежащая, в частности, в основе компрессионно-дистракционного остеогенеза, позволяет пролонгировать эту стадию сколь угодно долго, поддерживать длительное время процесс репаративной регенерации на очень высоком уровне и бескровно замещать большие дефекты костной ткани [10].

При переломе кости возникает воспалительная реакция, первыми участниками которой являются нейтрофильные лейкоциты. Уже в конце 2-х суток при распаде этих клеток выделяются холин и другие медиаторы, которые приводят к трансформации моноцитов в макрофаги. Эти клетки не только занимаются очищением раны от некротических тканей, распадающихся нейтрофилов, продуктов бактериального распада, но и синтезируют большое количество цитокинов (трансформирующий фактор роста-β, морфогенетический белок кости, инсулиноподобный фактор роста, фактор роста фибробластов, эндотелиальный фактор роста сосудов и др.). Общепризнанным считается, что источником, предшественником остеокластов, являются макрофаги, «сливающиеся» в 1 гигантскую многоядерную клетку [13]. И это кажется логичным, так как для очистки костной раны нужен свой специфический «чистильщик», которым как раз и является остеокласт. Несмотря на обилие цитокинов, до сих пор неясно, под влиянием какого медиатора макрофаги превращаются в остеокласт. Особенностью цитокинов является то, что они действуют на очень коротком расстоянии и на строго определенные клетки-мишени. Остеокласт представляет собой гигантскую клетку, возникшую от слияния несколько десятков макрофагов, что хорошо укладывается в философскую категорию перехода количества в качество. Остеокласт может резорбировать кость, что невозможно для макрофага. Фактически остеокласт является костным макрофагом — «чистильщиком» костной раны.

Существует тесная связь между скоростью резорбции и образования кости. В этом процессе участвуют остеобласты, скелетогенные стволовые и клетки-предшественники, которые могут дифференцироваться по остеогенному либо по хондрогенному пути [8]. Эта дифференцировка зависит от степени восстановления микроциркуляторной сети в месте повреждения и степени оксигенации тканей [9, 11]. Мезенхимальные клетки, т.е. эмбриональные, способны активно делиться и дифференцироваться в разные клетки. Дифференцировка всех этих клеток контролируется и направляется фактором роста фибробластов, инсулиноподобным фактором роста и др. [12].

Наше предположение, что длительное поддержание репаративной регенерации в зоне растяжения молодой костной мозоли (дистракция) на высоком уровне обусловлено не только активностью остеобластов, но и качеством санации костной раны остеокластами, нуждается в проверке. С этой целью были проведены опыты на крысах, в которых исследовали влияние стимуляции и торможения I деструктивно-резорбтивной фазы на репаративную регенерацию нижней челюсти.

В 1-й эксперимент включили 90 белых беспородных крыс массой 180—200 г, которым под эфирным наркозом рассекали мягкие ткани в правой подчелюстной области, скелетировали нижнюю челюсть, и между первым и вторым молярами маникюрными кусачками производили перелом тела нижней челюсти. Стремясь создать открытый перелом, перфорировали слизистую оболочку, обеспечивая сообщение полости рта с местом перелома челюсти. Наружную рану зашивали. Иммобилизации не производили, но крысы получали мягкую измельченную полноценную пищу. Важную роль в осуществлении физиологического контроля резорбции костной ткани играет гормон паращитовидной железы, чем и определялся дизайн опытов.

Крыс разделили на 3 группы. Животным 1-й группы (контроль) инъецировали физиологический раствор, во 2-й группе — деструктивно-резорбтивную фазу стимулировали путем внутримышечного введения паратиреоидного гормона (ПТГ) в дозе 0,1 ЕД на 100 г массы тела животного в первые 3 дня после перелома; в 3-й группе деструктивно-резорбтивную фазу в те же сроки тормозили интраоральным введением МУ в дозе 2 мг на 100 г массы тела [5].

Во 2-й эксперимент включили 180 таких же животных с аналогичными переломами нижней челюсти. Животных распределили на 9 групп по 20 в группе в зависимости от используемых препаратов. Им в первые 5 сут после перелома нижней челюсти вводили ретаболил, индометацин, дексаметазон, тестостерон, витамин Е, витамин D3, витамин А, ПТГ и кальцитонин (КТ). ПТГ (0,1 ЕД/100 г) и КТ (0,1 ЕД/100 г) вводили внутримышечно ежедневно. Дексаметазон (0,004 мг/100 г) и тестостерон (0,01 мг/100 г) ежедневно инъецировали под кожу. Ретаболил (0,5 мг/100 г) вводили под кожу на 1-й и 5-й дни после перелома. Витамин Е (0,125 мг/100 г), витамин D3 (100 нг/100 г), витамин А (6 ЕД/100 г) и индометацин (0,03 мг/100 г) вводили в полость рта из шприца ежедневно. Чтобы меньше травмировать животных, часть препаратов давали в 1-ю, а часть — во 2-ю половину дня. Результаты оценивали через 1 мес по количеству осложнений и прочности сращения отломков нижней челюсти. Прочность сращения отломков оценивали с помощью машины Instron 1122. Для анализа брали нижние челюсти только с нормальной консолидацией отломков.

Как мы и предполагали, использование ПТГ уменьшило количество осложнений на 36%, а применение МУ почти на столько же увеличило (табл. 1).Регенерация костной ткани при переломах челюстей Необходимо отметить, что длительное применение МУ (в течение 2 нед) привело к тому, что осложнений стало недостоверно меньше, чем в контрольной группе, животные которой получали плацебо. Это объясняется тем, что МУ, отрицательно повлияв на I, резорбтивную, стадию, оказал в более поздние сроки положительное влияние на одну из последующих синтетических стадий.

Статистическая обработка результатов показала, что прочность сращения отломков у животных, получавших ПТГ, была достоверно значительно выше, чем у животных, получавших МУ (см. рисунок).Регенерация костной ткани при переломах челюстейРисунок 1. Влияние введения ПТГ и МУ на величину максимального усилия (а) и общей работы (б), необходимых для разрушения костной мозоли нижней челюсти крысы. 1 — нижняя челюсть интактных животных; 2 — нижняя челюсть нелеченых животных; 3 — нижняя челюсть животных после введения ПТГ; 4 — нижняя челюсть животных после введения МУ.

Таким образом, стимулирование I, резорбтивной стадии репаративной регенерации, не только уменьшило число осложнений, но и создало оптимальные условия для остеогенеза, что обеспечило более прочное сращение отломков.

Основываясь на информации о ведущей роли остеоиндукции в репаративном остеогенезе и на результатах нашей работы по стимуляции резорбтивной фазы остеогенеза, обусловленной выделением из травмированной кости белков остеоиндукторов, мы изучали влияние на остеоиндуктивный механизм ряда препаратов, являющихся остеотропными и применяющихся в клинической практике.

После обработки материалов 2-го эксперимента было установлено, что ретаболил, дексаметазон, тестостерон и витамин Е ухудшают остеоиндуктивный потенциал кости, способствуют возникновению травматического остеомиелита, замедляют сращение отломков и, следовательно, их применение в первые дни после травмы нежелательно. Целесообразность применения в ранние сроки после перелома витамина А и КТ сомнительна, так как их действие, по-видимому, опосредовано через синтез остеоиндуктивного фактора, а это требует времени. Поэтому они показаны со второй трети регенераторного периода, т.е. в синтетической стадии. Но их применение, как и индометацина, по крайней мере, безвредно. Хорошие результаты дали ПТГ и активный витамин D3 — кальцитриол (табл. 2).Регенерация костной ткани при переломах челюстей

Исследование показало, что необходима разработка критериев, позволяющих выявлять тип регенерации у конкретного индивида, т.е. устанавливать генетический потенциал его регенераторной способности. Следует объединить силы клиницистов и экспериментаторов с целью определения границ стадий репаративного остеогенеза и разработки методов создания оптимальных условий на каждой из них. Решение этих задач не под силу 1—2 группам; необходима общая координация усилий для разработки принципиально новой тактики и стратегии лечения больных с переломами костей.

Источник

Есть два вида регенерации – физиологическая и репаративная. Под физиологической регенерацией понимают восстановление тканевых структур здорового организма по мере их старения и отмирания. Наглядным примером этого является кожа — постоянное отслоение и отшелушивание эпидермиса. Физиологическая регенерация — это постоянный и очень медленный процесс, который не вызывает стрессовой ситуации в организме.

  • Регенерация костей: основные сведения
  • Источники регенерации
  • Стадии репаративного остеогенеза
  • Средства стимуляции остеорепарации

Регенерация костей: основные сведения

Репаративная регенерация — это восстановление поврежденной или потерянной ткани. Степень и качество регенеративного процесса в различных тканей различна. Чем выше дифференцировки ткани (нервная, мышечная), тем меньше у нее способность к восстановлению своей структуры. Поэтому анатомическое восстановление поврежденного участка происходит за счет замещения дефекта соединительной тканью — рубцом. Поврежденая костная ткань способна пройти ряд стадий репаративного процесса и восстановить свою анатомическую форму, гистологическую структуру и функциональную пригодность.

Перелом кости сопровождается повреждением прилежащих мягких тканей и вызывает стрессовую ситуацию, которая сопровождается местной и общей реакциями организма. В процессе восстановления костной ткани происходят сложные общие и местные биологические и биохимические изменения, которые зависят от кровоснабжения кости, возраста больного, общего состояния организма, а также качества лечения.

Структура кости, регенерация

Источники регенерации

Восстановление целостности кости происходит путем пролиферации клеток остеогенного слоя надкостницы, эндоста, недостаточно дифференцированных плюрипотентных клеток костного мозга, а также вследствие метаплазии гиараосальних тканей.

Современные представления о процессах регенерации костной ткани сочетают концепции неопластической и метапластическая теорий. Преостеогенными клетками считают остеобласты, фибробласты, остеоциты, перициты, гистиоциты, лимфоидные, жировые и эндотелиальные клетки, клетки миелоидного и эритроцитного рядов.

При сращения сломанных костей установлена ​​стадийность репаративного остеогенеза, которая имеет условный характер. Деление на стадии не имеет принципиального значения, поскольку они в динамике перекрываются.

Даже при идеальной репозиции и фиксации отломков дифференцировки различных клеток происходит одновременно, и поэтому стадийность репаративного процесса трудно разграничить. Но для выбора оптимальной тактики лечения больных нужно иметь представление о закономерностях репаративного остеогенеза.

Стадии репаративного остеогенеза

Стадия катаболизма тканевых структур и клеточной инфильтрации. По сравнению с воспалением это стадия альтерации (разрушение). После травмы возникают омертвения поврежденных тканей и распад клеточных элементов гематомы.

Организм человека немедленно реагирует на травму местной фагоцитарной реакцией. Наряду с этим продукты распада, которые являются генетическими индукторами, вместе с гормонами обусловливают репродукцию и пролиферацию различных специализированных клеток (остеоциты, гистиоциты, фиброциты, лимфоидные, жировые и эндотелиальные клетки), то есть мелкоклеточная инфильтрацию, которая длится 6—10 дней.

Стадия дифференцировки клеток длится 10—15 дней. В основном ДНК и РНК, а также анаболические гормоны направляют дифференцировку клеток прогрессирующего мелкоклеточного инфильтрата. Одновременно происходит три типа дифференцировки клеток: фибробластические, хондроидные и остеогенные. Это зависит от условий, при которых происходит репаративный процесс.

При идеальных репозиции и фиксации отломков и достаточном кровоснабжении (применение аппаратного остеосинтеза т.д.) сращение происходит по типу первичного остеогенеза. Дифференцировка большинства клеток сразу направлена на образование остеоидной ткани. Когда фиксация ненадежна или недостаточное кровоснабжение отломков вследствие тяжелых повреждений, дифференцировки клеток происходит путем фиброгенеза с последующей метаплией в хрящевую и костную ткани.

Стадия формирования первичного остеона — образование ангиогенной костной структуры — происходит в течение 16—21 дней. Характеризуется она тем, что возникает полная реваскуляризадия первичной мозоли. Регенерат прорастает капиллярами и начинается минерализация его белковой основы. Появляется мелкопетличная, хаотично ориентирована сетка костных трабекул, которые постепенно сливаются с образованием первичного остеона и гаверсовых канальцев.

Стадия перестройки первичного регенерата или спонгиозации мозоли, — это та стадия, на которой формируется пластинчатая костная ткань. Во время перестройки первичного регенерата костный пластинчатый остеон набирает ориентации над силовыми линиями нагрузки, появляется корковое вещество кости, надкостницы и восстанавливается костно-мозговая полость. Части регенерата, которые за нагрузкой, рассасываются. Все это приводит к полному восстановлению структуры и функции переломанной кости. В зависимости от локализации перелома процесс перестройки и восстановления может длиться от нескольких месяцев до 2—3 лет.

Итак, из закономерностей репаративной регенерации костной ткани вытекают следующие практические выводы:

1) идеальной репозиции и фиксации костных отломков следует добиваться быстрее, к тому же не позднее, чем начнется стадия дифференцировки клеток;

2) поздняя репозиция, любое вмешательство с целью коррекции отломков ведут к повторному разрушению капилляров регенерата и нарушению репаративного остеогенеза;

3) стимулятором образования пластинчатой ​​кости в процессе перестройки первичного регенерата является функциональная нагрузкп, о которой следует помнить при лечении больных.

Теоретически различают три вида репаративной регенерации костной ткани — первичная, первично-замедленная и вторичное сращение. Первичное сращение костей происходит в течение короткого времени первичным остеогенезом за счет образования интермедиарной мозоли. Но для этого следует  создать все условия. Прежде всего это наблюдается при забойных и компрессионных переломах костей, часто после идеальной репозиции (диастаз между отломками 50—100 мкм) и надежной фиксации отломков.

Первично-замедленное сращение бывает тогда, когда между неподвижными отломками нет щелей, сращения проходит только по сосудистым каналам (интраканаликулярный остеогенез), т.е. возникает частичное сращение, а полному межкостному сращиванию предшествует резорбция концов отломков. Но с практической точки зрения этот вид репарации следует расценивать как положительный, и поэтому клиницисты придерживаются разделения на два вида восстановления кости — первичное и вторичное.

Вторичное сращение переломанных костей происходит за счет образования менее полноценных видов мозоли — периостальной, эндостальной и параосальной (гематома, мягкие ткани).

Образованием избыточной периостальной и параосальной мозоли организм пытается компенсировать фиксацию отломков, которой не сделал врач. Это природный саногенез организма. В этом случае срок сращения кости значительно увеличивается. По характеру мозоли на рентгенограмме можно сразу оценить качество лечения больного. Чем больше мозоль, тем хуже была фиксация отломков.

Вторичное сращение кости сравнивают с заживлением ран мягких тканей. Но в заживлении поражения двух тканей принципиальная разница. Заживление раны мягких тканей, происходит вторичным натяжением, заканчивается образованием рубца, в то время как при переломе кости в процессе репарации все костные клетки проходят стадию метаплазии, что заканчивается образованием полноценной кости. Однако для того чтобы кость срослась вторично, необходима также надежная фиксация отломков. Если ее не будет, то клетки пройдут стадии фибро- и хондрогенеза, перелом заживет, но кость не срастется.

Вопрос о стимуляции репаративного остеогенеза в теоретическом плане остается нерешенным. Попытки ускорить регенерацию костной ткани уже были давно, и сейчас не уменьшается количество поисков.

Средства стимуляции остеорепарации

1) механические (раздражение периоста постукиванием молоточком по месту перелома, локальный массаж, дозированная нагрузка конечности, управляемое динамическая нагрузка сегмента конечности аппаратом Пустовойта т.п.);

2) физические (ИК, УВЧ—излучения, диатермия, электрофорез лекарств, ультразвуковая, лазерная, магнитная терапия, оксибаротерапия, электростимуляция и т.д.);

3) медикаментозные (метионин, цистеин, карбоксилин, витамины, нуклеиновые кислоты, ретаболил, тиреокальцитонин, кальцитрин, экзогенная гомологична РНК, мумие и т.д.);

4) биологические (локальные инъекции аутокрови, некрогормонотерапия, экстракты органов и тканей по И. Л. Зайченко, использование переходного эпителия мочевых путей, декальцинованого матрикса и молотой кости, костного трансплантата и т.д.).

Следует отметить, что некоторые средства стимуляции (лазерная, магнитная терапия и др.) И ныне еще ​​не имеют полного теоретического обоснования, хотя эмпирически доказано их положительное влияние на срастание костей. Применение стимулирующих средств в зависимости от их целенаправленного действия следует связывать со стадией репаративного процесса в кости. Например, сначала назначают такие средства, которые способствуют обменным процессам, клеточной инфильтрации и дифференцировке клеток. На стадии формирования пластинчатой ​​кости важен выбор оптимальной нагрузки костного сегмента.

Следует помнить, что сращиванию перелома кости помогает комплекс благоприятных факторов, но в условиях идеальной репозиции отломков, надежной их фиксации, полноценного питания и нормального обмена веществ. Если этого не будет, то репаративный процесс нарушается, и кость может не срастись независимо от вида стимулирования.

Источник