Линия перелома завуалирована

Линия перелома завуалирована thumbnail

ЛИНИЯ ПЕРЕЛОМА И ПЛОСКОСТЬ ПЕРЕЛОМА

Основным рентгенологическим симптомом перелома является наличие в тени кости линии перелома, которая непосредственно указывает на нарушение целости костного вещества. В губчатом веществе линия перелома сказывается в перерыве структурного рисунка ; на позитиве отдельные трабекулы разъединены на известном протяжении в виде более светлой полоски. Значительно более ясно линия перелома обрисовывается в компактном веществе, где светлая полоска контрастнее выступает на фоне более темного коркового слоя. Легче всего поэтому линия перелома определяется рентгенологически в тех костях, где имеется толстый кортикальный слой, т. е. в диафизах длинных трубчатых костей. В костях же с тонким корковым слоем, как, например, в пяточной кости или позвонке, линия перелома иногда едва только заметна или даже на снимке совсем не обнаруживается. Контуры линии перелома характеризуются мелкой зазубренностью.

В губчатом веществе зубцы могут достигать большой высоты, и линия перелома может иметь зигзагообразный ход (рис. 15). Иногда она слегка дугообразна или волниста. В корковом веществе контуры линии бывают более ровными и подчас даже совершенно гладкими.

В самой кости на самом деле существует не Линия перелома, а п Л 0 с-кость перелома; рентгеновская линия перелома есть лишь своеобразное плоскостное изображение этой истинной плоскости перелома. Рентгенологическая картина этой линии зависит не только от свойств реальной плоскости перелома, но и в значительной степени от той проекции, в которой был произведен снимок. Если (рис. 16, Л) центральный луч проходит через плоскость поперечного перелома, то проекция диска,

отделяющего друг от друга оба отломка, на рентгенограмме представится в виде правильной светлой прямой полоски ; если же анод трубки смещен в сторону (рис. 16,Б) (в сторону стрелки), то та же самая плоскость перелома будет иметь вид овала или сдавленного круга. С другой же стороны, косой перелом при косом ходе лучей даст линейную тень, а при направлении лучей перпендикулярно к длиннику трубчатой кости на снимке получится замкнутая овальная линия перелома.

Рис. 15. Зигзагообразный ход линии перелома при поперечном переломе средней трети диафиза лучевой кости.

Рис. 15. Зигзагообразный ход линии перелома при поперечном переломе средней трети диафиза лучевой кости.

Еще сложнее проекция плоскости перелома при спиральном переломе, проходящем по поверхности кости спиральной линией, концы которой обязательно замыкаются продольной линией (рис. 17).

Рис. 16. Схема рентгенограммы при поперечном переломе трубчатой кости. А — линия перелома в виде прямой полоски при прохождении центрального луча через плоскость перелома; Б — линия перелома в виде овала при косом ходе лучей. Анод смещен (по направлению стрелки).

Рис. 16. Схема рентгенограммы при поперечном переломе трубчатой кости. А — линия перелома в виде прямой полоски при прохождении центрального луча через плоскость перелома; Б — линия перелома в виде овала при косом ходе лучей. Анод смещен (по направлению стрелки).

Поэтому детальный анализ линии перелома при оскольчатых и других переломах, а также при переломах через сложные костные рельефы с буграми, мыщелками и пр. может представлять большие трудности. Таким образом, яснее всего на рентгенограмме обрисовывается линия перелома в том случае, если центральный луч проходит через главную плоскость так называемого гладкого перелома; при этих условиях светлая полоска особенно резка и контрастна потому, что представляет собой суммарную тень дефекта на 360° коркового слоя. Практически это встречается не очень часто.

При косом же ходе лучей дефект одного полуцилиндра коркового слоя трубчатой кости прикрывается неизмененным другим полуцилиндром, и линия перелома может быть очень слабо заметна.

К анализу линии перелома не следует подходить упрощенно. Понимание топографо-анатомических взаимоотношений перелома на основании плоскостных рентгенограмм дается врачу не сразу. Необходимо научиться геометрическому, пространственному мышлению, зарисовывая каждый случай перелома карандашом на поверхности мацерированной кости или на стеклянном цилиндре. Вращая в руках кость или стеклянный фантом, каждый убедится в том, что и простые переломы читаются рентгенологически не всегда просто.

Нарушение целости может быть полным или неполным. В последнем случае линия является не замкнутой, т. е. исходная точка линии не встречается с конечной точкой. Подобное неполное повреждение, при котором линия никогда не зияет, носит название трещины (fissura). Трещины чаще всего попадаются при травмах плоских костей, например черепа, а также идут продольно в длинных костях, осложняя поперечный или косой перелом.

Рис. 17. Схема спирального перелома длинной трубчатой кости. Проекция линии перелома при различных положениях кости, вращаемой в направлении движения часовой стрелки вокруг длинной оси на 90°, 180° и 270°.

Рис. 17. Схема спирального перелома длинной трубчатой кости. Проекция линии перелома при различных положениях кости, вращаемой в направлении движения часовой стрелки вокруг длинной оси на 90°, 180° и 270°.

На рентгенограмме трещина обрисовывается в виде очень узкой линии наподобие линии перелома, которая постепенно теряется в неизмененной костной структуре.

При локализации перелома вблизи сустава необходимо обратить особое внимание на то, не проникает ли линия перелома или трещина в суставную щель, т. е. не является ли перелом внутрисуставным, интраартикулярным. Под наименованием внутрисуставных переломов надо понимать, по Ф. Р. Богданову, такие переломы, которые образуются на участках, ограниченных капсулой сустава, или же проникают в него извне, со стороны метафиза. Рентгенодиагностике здесь принадлежит очень ответственная роль, так как любое нарушение целости суставной поверхности важно практически, а клиническое распознавание этого осложнения представляет подчас очень большие трудности. Внутрисуставной перелом ухудшает предсказание и требует особых терапевтических мероприятий, поэтому проглядеть его — значит совершить серьезную ошибку.

В тех случаях, когда линия перелома проходит в эпифизе в общем параллельно длинной оси конечности, или, другими словами, лежит косо или перпендикулярно к суставной щели, распознавание на рентгенограмме является легкой задачей. Значительно труднее судить об этом, когда линия перелома пересекает эпифиз поперек, т. е. параллельно суставной щели ; при этом необходимо знать, на каком расстоянии от суставного конца кости спереди, сзади и с боков прикрепляется суставная сумка. Так как иногда все же трудно точно себе представить все топографические взаимоотношения, например, проходит ли линия перелома с тыльной или с ладонной поверхности при Т-образном переломе дистального эпифиза лучевой кости, или — другой пример — спереди или сзади в шейке бедра, то и рентгенограммы не всегда окончательно решают вопрос, имеется ли внутри- или внесуставной перелом. Поэтому положительная рентгенодиагностика интраартикулярного перелома очень ценна, отрицательная же имеет меньшее значение.

Читайте также:  Перелом седалищной кости таза

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Страницы: 1 2

Источник

Раньше принято было устанавливать определенные сроки срастания переломов для каждой области; для ключицы — 3 недели, для ладьевидной кости — 4, большеберцовой — 8, бедра — 10 недель и т. д. В последнее время эти сроки увеличены до 3-4 месяцев, но основная ошибка, заключающаяся в самом установлении срока, остается, и перелом не срастающийся в этот срок, расценивается как несросшийся. В таких случаях меняют метод лечения: гипсовую повязку снимают, применяют тепло и массаж, поколачивание молотком, назначают аппарат для хождения и таким образом прекращают иммобилизацию. Это столь же нерационально, как вырывать с

корнем растение, не расцветшее в установленный срок, чтобы стимулировать затем его рост с помощью тепла и химикалий. Образование мозоли может быть медленным по естественным условиям или из-за неправильности лечения. Задержка на недели и даже на месяцы еще не означает, что срастание не наступит. Какое значение имеет разница в сроке, если перелом находится в состоянии срастания, хотя бы и замедленного? Основная задача лечения — обеспечить покой и полную иммобилизацию.

Медленное срастание

Если в течение первых недель линия перелома ясно видна, но нет расхождения отломков, вогнутости поверхностей перелома, декальцинации и склероза, положение нормально. Но при этом срастание может быть медленным. Вялость заживления зависит от типа перелома, кровоснабжения, возраста и конституции больного. Перелом срастется, если будет обеспечена достаточно длительная иммобилизация.

Запоздалое срастание

Неликвидированная подвижность отломков и вызываемая ею реактивная гиперемия обусловливают декальцинацию кости, вследствие чего линия перелома расширяется, образуя полость с неясно выраженными очертаниями; рекальцинации или склероза еще нет (рис. 3).

Линия перелома завуалированаЛиния перелома завуалирована

Рис. 3. Замедленное срастание.
Рентгенограмма через 6 месяцев после перелома ладьевидной кости обнаруживает декальцинацию и образование полости на месте перелома (1). После надлежащей иммобилизации перелом срастается (2).

Это пример запоздалого срастания. Восстановление целости кости еще не полное: промежуток между фрагментами заполнен грануляционной, но не рубцовой тканью. Главной целью лечения в таком случае является устранение подвижности отломков и их растяжения, явившихся причиной декальцинации. Перелом должен быть хорошо иммобилизован на несколько недель или месяцев, пока не произойдут рекальцинация и консолидация перелома.

Несрастание перелома

Если подвижность отломков не устранена, через несколько месяцев процесс переходит в III стадию. Щель между отломками может быть частично заполнена, но края перелома хорошо очерчены. Поверхности переломов относительно гладкие, и когда выявляется склероз костных отломков, битва проиграна: активность клеток прекращается, и несрастание можно считать установленным. Соединение отломков плотной рубцовой тканью и появление подобия синовиальной жидкости приводит к образованию ложного сустава. В таких случаях уже не имеет значенияпродолжительность иммобилизации, срастание кости никогда не наступят. Основной задачей лечения является удаление склерозированных тканей. При операции иссекают обескровленный рубец и уплотненную кость, чтобы обнажить васкуляризованную ткань, способную к стимулированию роста грануляций. Таким образом создаются условия, как при свежем переломе. Далее применяют иммобилизацию. Эта же цель может быть достигнута освежением костных поверхностей или сверлением фрагментов в различных направлениях через небольшой разрез. Еще лучше в этих целях произвести костнопластическую операцию, так как приготовление ложа устраняет склерозированную ткань, и использование трансплантата — несоприкосновение отломков. После любого вмешательства проводится тщательная иммобилизация.

——————————

Переломы костей и повреждения суставов

——————————

Есть в продаже порошок для зубов по лучшим ценам.

Источник

  • Авторы
  • Резюме
  • Файлы
  • Ключевые слова
  • Литература

Еманов А.А.

1

Степанова Г.А.

1

Дюрягина О.В.

1

Солдатов Ю.П.

1

Овчинников Е.Н.

1

1 ФГБУ «Российский научный центр «Восстановительная травматология и ортопедия» им. академика Г.А. Илизарова» Минздрава России

В работе изучены клинико-рентгенологические результаты влияния электромагнитных волн терагерцевого диапазона на регенерацию костной ткани при переломах бедренной кости у крыс в условиях чрескосного остеосинтеза. Эксперимент был выполнен на 15 крысах линии Вистар в возрасте от 6 до 8 мес. Всем животным моделировали перелом бедренной кости в средней трети и фиксировали отломки разработанным нами оригинальным устройством для остеосинтеза конечностей мелких животных. В первой серии эксперимента самцам после остеотомии осуществляли фиксацию конечности разработанным устройством до момента рентгенологической консолидации перелома. Во второй – самцам после остеосинтеза проводили воздействие электромагнитными волнами терагерцевого диапазона для стимуляции остеогенеза. В третьей – самкам в возрасте 3 месяцев (за 3 месяца до оперативного вмешательства) осуществляли овариоэктомию, а после остеотомии и остеосинтеза осуществляли аналогичную стимуляцию, как и во второй серии. Для стимуляции остеогенеза использовали аппарат КВЧ-терапии «Орбита». Было выявлено, что на 28-е сутки во второй серии эксперимента периостальная реакция на уровне перелома определялась слабо, тени компактизировались, и их плотность приближалась к кортикальным пластинкам отломков (материнской кости) или сливались с ними. К этому сроку наблюдалось формирование единых кортикальных пластинок, что явилось критерием консолидации перелома. В первой и третьей сериях сращение перелома отмечалось к 35-м суткам фиксации в аппарате. Эффект воздействия электромагнитных волн терагерцевого диапазона в экспериментальных группах нами оценивается как положительный в направлении сокращения сроков фиксации.

Читайте также:  Сколько времени зарастает перелом позвоночника

электромагнитные волны терагерцевого диапазона

чрескостный остеосинтез

регенерация кости

перелом

1. Андронов Е.В. Экспериментальное изучение влияния электромагнитных волн терагерцового диапазона на частотах оксида азота на внутрисосудистый компонент микроциркуляции : автореф. дис. … докт. мед. наук. – Саратов, 2008. – 50 с.

2. Антистрессорное действие электромагнитного излучения терагерцового диапазона частот молекулярного спектра оксида азота / В.Ф. Киричук, О.Н. Антипова, А.Н. Иванов и др. // Биомедицинские технологии и радиоэлектроника. – 2004. – № 11. – С. 12-20.

3. Влияние КВЧ-излучения на частотах оксида азота на микроциркуляцию в костной ткани и красный костный мозг при остром и хроническом стрессе / Н.В. Богомолова, Р.М. Дулатов, С.И. Киреев и др. // Вестник Волгоградского государственного медицинского университета. – Волгоград, 2010. – № 4 (36). – С. 83-86.

4. Киреев С.И. Микроциркуляторные нарушения у больных с патологией опорно-двигательного аппарата (обзор литературы) / С.И. Киреев, О.Н. Ямщиков, Д.А. Марков // Вестник Тамбовского технического университета. – 2011. – Т. 16. – Вып. 2. – С. 552-555.

5. Киреев С.И. Электромагнитные волны терагерцового диапазона как фактор коррекции микроциркуляторных нарушений опорных тканей (экспериментально-клиническое исследование) : дис. … докт. мед. наук. – Саратов, 2011. – 303 с.

6. Комплексное экспериментальное и клиническое исследование эффективности КВЧ-терапии на частотах оксида азота в восстановительном лечении пациентов с переломами костей / Н.В. Богомолова, Р.М. Дулатов, С.И. Киреев и др. // Вестник новых медицинских технологий. – 2010. – Т. XVII. – № 1. – С. 107-110.

7. Молекулярные HITRAN-спектры газов метаболитов в терагерцовом и ИК диапазонах частот и их применение в биомедицинских технологиях / О.В. Бецкий, А.П. Креницкий, А.В. Майбородин и др. // Биомедицинские технологии и радиоэлектроника. – 2007. – № 7. – С. 5-9.

8. Киреев С.И., Тыжук К.И., Лим В.Г., Креницкий А.П. Способ лечения комплексного регионарного болевого синдрома : патент РФ на изобретение № 2394613, 08.06.2010.

9. Ирьянов Ю.М., Дюрягина О.В., Накоскин А.Н., Ирьянова Т.Ю., Наумов Е.А. Спица для остеосинтеза : патент РФ на полезную модель № 87899, 27.10.2009.

Введение

В настоящее время травматология и ортопедия обладает широким спектром оперативных методов лечения и реабилитации травм и заболеваний опорно-двигательной системы. Однако результат лечения зачастую не всегда удовлетворяет хирургов. Возникающие осложнения в виде формирования псевдоартрозов, рецидива ложных суставов, замедленной консолидации, различных деформаций и остеоартрозов существенно снижают качество проведенного лечения. Во многом это связано с общим состоянием систем органов и наличия сопутствующих заболеваний у пациентов, особенно в старших возрастных группах. По нашему мнению, применение комплексного подхода в решении вопроса реабилитации пациентов способствует оптимизации результатов лечения. Несомненно и то, что в настоящее время разработаны достаточно эффективные методики комплексной реабилитации пациентов с последствиями травм опорно-двигательной системы. Однако поиск новых малоинвазивных способов оптимизации репаративных процессов остается эффективным. Одним из подобных способов является применение низкоинтенсивного терагерцевого излучения на частотах молекулярного спектра излучения и поглощения оксида азота.

В доступной литературе широко освещены вопросы применения электромагнитных волн терагерцевого диапазона в биологии и медицине. Было доказано, что терагерцевочастотное (ТГЧ) излучение на частотах МСИП оксида азота 150, 176-150, 664 ГГц является эффективным немедикаментозным методом коррекции перфузии тканей в условиях острого стресса [2; 7; 8]. Изучалось и влияние электромагнитного излучения терагерцевого диапазона на частоте молекулярного спектра излучения и поглощения оксида азота 240 ГГц на агрегационную активность тромбоцитов, реологические свойства крови, коагуляционный потенциал и фибринолитическую активность крови больных нестабильной стенокардией в условиях in vitro [1]. В работах, посвященных влиянию электромагнитного облучения терагерцевого диапазона на микроциркуляторные нарушения костной ткани и красного костного мозга, а также на структурно-функциональные изменения опорных тканей при экспериментальном иммобилизационном стрессе у животных, отмечен положительный корригирующий эффект [3–6]. Слабоизученным остается вопрос экспериментального обоснования по определению эффективности применения электромагнитных волн терагерцевого диапазона при переломах конечностей.

Цель исследования: изучение результатов клинико-рентгенологического исследования влияния электромагнитных волн терагерцевого диапазона на регенерацию костной ткани при переломах бедренной кости у крыс в условиях чрескостного остеосинтеза.

Материалы и методы исследования

Эксперимент был выполнен на 15 крысах линии Вистар в возрасте от 6 до 8 мес. (5 самок, 10 самцов), массой тела от 250 до 350 г, с длиной бедра 3,9±0,6 см. Содержание животных, оперативные вмешательства и эвтаназию осуществляли согласно Приказу Минздрава СССР (от 12.08.1977 г. № 755) и требованиям Европейской конвенции по защите экспериментальных животных (1986). Всем животным моделировали перелом бедренной кости в средней трети и фиксировали разработанным нами оригинальным устройством для остеосинтеза конечностей мелких животных (рис. 1), которое позволяет малоинвазивно фиксировать фрагменты кости и не препятствует воздействию электромагнитных волн, что снижает погрешность исследования.

IMG_1170

Рис. 1. Внешний вид животного с устройством для остеосинтеза конечностей мелких животных (заявка на полезную модель).

Животных разделили на 3 серии опытов. В первой серии (самцы, n=5) осуществляли остеотомию бедренной кости в средней трети и фиксировали отломки разработанным устройством до момента рентгенологической консолидации перелома. Во второй – (самцы, n=5) после аналогичного остеосинтеза проводили локальное воздействие электромагнитными волнами терагерцевого диапазона для стимуляции остеогенеза. В третьей – (самки, n=5) в возрасте 3 месяцев (за 3 месяца до оперативного вмешательства) осуществляли овариоэктомию, а после остеотомии и остеосинтеза осуществляли аналогичную стимуляцию, как и во второй серии.

Для стимуляции остеогенеза использовали аппарат КВЧ-терапии «Орбита», который применяли по 10 минут в затылочной области и с медиальной поверхности оперированного сегмента по 6 сеансов в течение 14 дней (рис. 2).

Читайте также:  Надо ли снимать пластину после перелома ключицы

а) IMG_1174 б) IMG_1177

Рис. 2. Фото, иллюстрирующее проведение стимуляции аппаратом КВЧ-терапии «Орбита»: а) в затылочной области; б) в области перелома.

Оперативное вмешательство осуществлялось под наркозом. Для премедикации внутримышечно вводили раствор рометара в дозе 8 мг/кг веса, для наркоза – золетил в дозе 4 мг/кг. Наркозный сон наступал через 15 минут и продолжался 20-30 минут, выход из наркоза происходил через 1,5-2 часа. Перед остеосинтезом подготавливали операционное поле. Для этого выстригали шерсть на тазовой конечности животного, обрабатывали 3%-ным спиртовым раствором йода и отграничивали область бедра стерильной простыней. После чего осуществляли остеосинтез. Для этого использовали консольные спицы [9] и стержни-винты диаметром 1,2 мм. Проводили по одному стержню-винту на проксимальном и дистальном уровнях и фиксировали на планке. Далее осуществляли моделирование перелома. Для этого насверливали бедренную кость в разных плоскостях на уровне ее диафиза спицей диаметром 0,6 мм. После этого распускали спицу, проведенную в дистальном отделе, устанавливали пальцы рук на уровне проксимального отдела бедра и коленного сустава, не резко осуществляли торсионные движения до получения перелома. Затем дистальную спицу фиксировали в прежнем положении. Для обеспечения стабильности конструкции на расстоянии 0,5-0,8 мм от линии перелома проводили по одной спице через проксимальный и дистальный отломки под углом 45° к предыдущей и фиксировали на кронштейнах к планке.

Животных декапитировали на 35-е сутки фиксации, что соответствовало консолидации перелома в первой серии эксперимента.

В работе использовали клинический и рентгенологический методы исследования.

Результаты исследования и их обсуждение

После операции все животные полностью выходили из наркоза. На 1-2-е сутки у крыс наблюдался незначительный отек в области бедра, умеренная болезненность. Раневое отделяемое из спицевых каналов было скудное, серозного характера и наблюдалось в течение 7-10 суток после операции. Опороспособность конечности восстанавливалась на второй день после операции. К 21-м суткам фиксации у большинства животных амплитуда движения в коленном суставе составляла 90-100º и отмечалась незначительная атрофия мышц бедра.

Во всех сериях опыта рентгенологически после остеосинтеза линия излома была поперечная с мелкими зубцами (рис. 3). В большинстве случае ось костей была правильная (рис. 3 а, б) и сохранялась на протяжении всего периода эксперимента. В двух случаях отмечалось угловое смещение до 10° (рис. 3 в).

а) опер б) крыса № 14 день операции прямаякрыса № 14 день операции боковая в) оп

Рис. 3. Фрагменты рентгенограмм в день операции: а) 1-я серия; б) 2-я серия; в) 3-я серия.

На 7-е сутки рентгенологическая картина существенно не изменялась. Отмечались лишь единичные периостальные тени на отломках.

На 14-е сутки фиксации в первой группе рентгенологическая картина принципиально не отличалась от предыдущего срока, линия перелома четко визуализировалась (рис. 4 а). Во второй и третьей группах линия перелома просматривалась на всем протяжении, в некоторых случаях менее заметна. В межотломковой щели наблюдались единичные тени невысокой оптической плотности. У некоторых животных в зоне перелома происходило слияние проксимальных и дистальных периостальных теней (4 б, в).

а) 14 б) 7 в) 14

Рис. 4. Фрагменты рентгенограмм бедра крысы через 14 суток после операции: а) 1-я серия; б) 2-я серия; в) 3-я серия.

На 28-е сутки фиксации во второй и третьей сериях рентгенологически линию остеотомии перекрывали плотные гомогенные тени, сглаживая ее контуры (рис. 5 б). Во второй серии периостальная реакция на уровне перелома слабо определялась, тени компактизировались, и их плотность приближалась к кортикальным пластинкам отломков (материнской кости) или сливалась с ними. Напластования на отломках отсутствовали. К этому сроку наблюдалось формирование единых кортикальных пластинок, что явилось критерием консолидации перелома. Средний срок сращения в данной серии составил 28,8±1,1 суток. В первой и третьей сериях линия перелома завуалирована и просматривалась лишь в отдельных участках, периостальная реакция слабо выражена (рис. 65 а, в). Происходило слияние проксимальных и дистальных периостальных теней в зоне перелома. Средний срок фиксации в аппарате в данных сериях составил 34,2±1,03 суток.

а) 28 б) 28 в) 28

Рис. 5. Фрагменты рентгенограмм бедра крыс через 28 суток после операции: а) 1-я серия; б) 2-я серия; в) 3-я серия.

Выводы

На основании проведенных исследований определена эффективность применения электромагнитных волн терагерцевого диапазона для стимуляции остеогенеза при переломах бедренной кости у крыс, что подтверждается сокращением сроков консолидации в среднем на 16,5%. Эффект воздействия электромагнитных волн терагерцевого диапазона в экспериментальных группах нами оценивается как положительный в направлении сокращения сроков фиксации.

Перспективным является направление исследования, касающееся влияния ТГЧ-терапии на регенерацию опорных тканей в условиях остеопороза.

Работа выполнена при поддержке гранта Национальной ассоциации инноваций и развития информационных технологий «НАИРИТ» (№ ИК – 25/2012).

Рецензенты:

Дьячков Александр Николаевич, доктор медицинских наук, профессор, главный научный сотрудник научно-медицинского организационно-методического отдела ФГБУ «Российский научный центр «Восстановительная травматология и ортопедия» им. академика Г.А. Илизарова» Минздрава России, г. Курган.

Карасев Анатолий Григорьевич, доктор медицинских наук, доцент, старший научный сотрудник научно-клинической лаборатории травмы ФГБУ «Российский научный центр «Восстановительная травматология и ортопедия» им. академика Г.А. Илизарова» Минздрава России, г. Курган.

Библиографическая ссылка

Еманов А.А., Степанова Г.А., Дюрягина О.В., Солдатов Ю.П., Овчинников Е.Н. ВЛИЯНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН ТЕРАГЕРЦЕВОГО ДИАПАЗОНА НА РЕГЕНЕРАЦИЮ КОСТНОЙ ТКАНИ ПРИ ПЕРЕЛОМАХ КОНЕЧНОСТЕЙ В УСЛОВИЯХ ЧРЕСКОСТНОГО ОСТЕОСИНТЕЗА (ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ) // Современные проблемы науки и образования. – 2012. – № 6.;
URL: https://science-education.ru/ru/article/view?id=7778 (дата обращения: 25.05.2020).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

Источник