Точки перелома функции это

Точки перелома функции это thumbnail

Определения и классификация точек разрыва функции

Определение точки разрыва функции
Конечная точка x0 называется точкой разрыва функции f(x), если функция определена на некоторой проколотой окрестности точки x0, но не является непрерывной в этой точке.

То есть, в точке разрыва, функция либо не определена, либо определена, но хотя бы один односторонний предел в этой точке или не существует, или не равен значению f(x0) функции в точке x0. См. «Определение непрерывности функции в точке».

Определение точки разрыва 1-го рода
Точка называется точкой разрыва первого рода, если является точкой разрыва и существуют конечные односторонние пределы слева и справа :
.

Определение скачка функции
Скачком Δ функции в точке называется разность пределов справа и слева
.

Определение точки устранимого разрыва
Точка называется точкой устранимого разрыва, если существует предел
,
но функция в точке или не определена, или не равна предельному значению: .

Таким образом, точка устранимого разрыва – это точка разрыва первого рода, в которой скачек функции равен нулю.

Определение точки разрыва 2-го рода
Точка разрыва называется точкой разрыва второго рода, если она не является точкой разрыва 1-го рода. То есть если не существует, хотя бы одного одностороннего предела, или хотя бы один односторонний предел в точке равен бесконечности.

Исследование функций на непрерывность

При исследовании функций на непрерывность мы используем следующие факты.

  • Элементарные функции и обратные к ним непрерывны на своей области определения. К ним относятся следующие функции:
    , а также постоянная и обратные к ним функции. См. «Справочник по элементарным функциям».
  • Сумма, разность и произведение непрерывных, на некотором множестве функций, является непрерывной, функцией на этом множестве.
    Частное двух непрерывных, на некотором множестве функций, является непрерывной, функцией на этом множестве, за исключением точек, в которых знаменатель дроби обращается в нуль. См. «Арифметические свойства непрерывных функций»
  • Сложная функция непрерывна в точке , если функция непрерывна в точке , а функция непрерывна в точке . См. «Предел и непрерывность сложной функции»

Примеры

Пример 1

Задана функция и два значения аргумента и . Требуется: 1) установить, является ли данная функция непрерывной или разрывной для каждого из данных значений аргумента; 2) в случае разрыва функции найти ее пределы в точке разрыва слева и справа, установить вид разрыва; 3) сделать схематический чертеж.
.

Решение

Заданная функция является сложной. Ее можно рассматривать как композицию двух функций:
,   . Тогда
.

Рассмотрим функцию . Она составлена из функции и постоянных с помощью арифметических операций сложения и деления. Функция является элементарной – степенной функцией с показателем степени 1. Она определена и непрерывна для всех значений переменной . Поэтому функция определена и непрерывна для всех , кроме точек, в которых знаменатель дроби обращается в нуль. Приравниваем знаменатель к нулю и решаем уравнение:
.
Получаем единственный корень .
Итак, функция определена и непрерывна для всех , кроме точки .

Рассмотрим функцию . Это показательная функция с положительным основанием степени. Она определена и непрерывна для всех значений переменной .
Поэтому заданная функция определена и непрерывна для всех значений переменной , кроме точки .

Таким образом, в точке , заданная функция является непрерывной.

Точка разрыва второго рода

График функции y = 41/(x+2).

Рассмотрим точку . В этой точке функция не определена. Поэтому она не является непрерывной. Установим род разрыва. Для этого находим односторонние пределы.

Используя связь между бесконечно большими и бесконечно малыми функциями, для предела слева имеем:
при ,
,
,
.

Здесь мы использовали следующие общепринятые обозначения:
.
Также мы использовали свойство показательной функции с основанием :
.

Аналогично, для предела справа имеем:
при ,
,
,
.

Поскольку один из односторонних пределов равен бесконечности, то в точке разрыв второго рода.

Ответ

В точке   функция непрерывна.
В точке   разрыв второго рода,
.

Пример 2

Задана функция . Найти точки разрыва функции, если они существуют. Указать род разрыва и скачек функции, если есть. Сделать чертеж.
.

Решение

Точка разрыва первого рода

График заданной функции.

Функция является степенной функцией с целым показателем степени, равным 1. Такую функцию также называют линейной. Она определена и непрерывна для всех значений переменной .

В   входят еще две функции: и . Они составлены из функции и постоянных с помощью арифметических операций сложения и умножения:
,  .
Поэтому они также непрерывны для всех .

Поскольку функции, входящие в состав непрерывны для всех , то может иметь точки разрыва только в точках склейки ее составляющих. Это точки и . Исследуем на непрерывность в этих точках. Для этого найдем односторонние пределы.

Рассмотрим точку . Чтобы найти левый предел функции в этой точке, мы должны использовать значения этой функции в любой левой проколотой окрестности точки . Возьмем окрестность . На ней . Тогда предел слева:
.
Здесь мы использовали тот факт, что функция является непрерывной в точке (как и в любой другой точке). Поэтому ее левый (как и правый) предел равен значению функции в этой точке.

Читайте также:  Легкий перелом пальца

Найдем правый предел в точке . Для этого мы должны использовать значения функции в любой правой проколотой окрестности этой точки. Возьмем окрестность . На ней . Тогда предел справа:
.
Здесь мы также воспользовались непрерывностью функции .

Поскольку, в точке , предел слева не равен пределу справа, то в ней функция не является непрерывной – это точка разрыва. Поскольку односторонние пределы конечны, то это точка разрыва первого рода. Скачек функции:
.

Теперь рассмотрим точку . Тем же способом вычисляем односторонние пределы:
;
.
Поскольку функция определена в точке и левый предел равен правому, то функция непрерывна в этой точке.

Ответ

Функция имеет разрыв первого рода в точке . Скачек функции в ней: . В остальных точках функция непрерывна.

Пример 3

Определить точки разрыва функции и исследовать характер этих точек, если
.

Решение

Воспользуемся тем, что линейная функция определена и непрерывна для всех . Заданная функция составлена из линейной функции и постоянных с помощью арифметических операций сложения, вычитания, умножения и деления:
.
Поэтому она определена и непрерывна для всех , за исключением точек, в которых знаменатель дроби обращается в нуль.

Найдем эти точки. Приравниваем знаменатель к нулю и решаем квадратное уравнение:
;
;
;   .
Тогда
.

Используем формулу:
.
С ее помощью, разложим числитель на множители:
.

Тогда заданная функция примет вид:
(П1)   .
Она определена и непрерывна для всех , кроме точек и . Поэтому точки и являются точками разрыва функции.

Разделим числитель и знаменатель дроби в (П1) на :
(П2)   .
Такую операцию мы можем проделать, если . Таким образом,
  при  .
То есть функции и отличаются только в одной точке: определена при , а в этой точке не определена.

Чтобы определить род точек разрыва, нам нужно найти односторонние пределы функции в точках и . Для их вычисления мы воспользуемся тем, что если значения функции изменить, или сделать неопределенными в конечном числе точек, то это не окажет ни какого влияние на величину или существование предела в произвольной точке (см. «Влияние значений функции в конечном числе точек на величину предела»). То есть пределы функции в любых точках равны пределам функции .

Рассмотрим точку . Знаменатель дроби в функции , при в нуль не обращается. Поэтому она определена и непрерывна при . Отсюда следует, что существует предел при и он равен значению функции в этой точке:
.
Поэтому точка является точкой устранимого разрыва первого рода.

Рассмотрим точку . Используя связь бесконечно малых и бесконечно больших функций, имеем:
;
.
Поскольку пределы бесконечные, то в этой точке разрыв второго рода.

Ответ

Функция имеет точку устранимого разрыва первого рода при , и точку разрыва второго рода при .

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.

Автор: Олег Одинцов.     Опубликовано: 22-09-2018

Источник

График функции y = x3 с точкой перегиба (0, 0), также являющейся седловой точкой.

Точка перегиба — точка плоской кривой, в которой её ориентированная кривизна меняет знак. Если кривая является графиком функции, то в этой точке выпуклая часть функции отделяется от вогнутой (то есть вторая производная функции меняет знак).

Определения[править | править код]

Точка (простого) перегиба регулярной кривой — это такая точка этой кривой, в которой касательная к кривой имеет с ней соприкосновение второго порядка и разбивает кривую, то есть точки кривой, лежащие в некоторой окрестности данной точки по разные стороны от этой точки, лежат также по разные стороны от касательной[1][2]. Если кривая 2-регулярна, то условие заменяется на следующее: ориентированная кривизна кривой при переходе через точку перегиба изменяет знак.
Точкой высшего (вырожденного) перегиба кривой называется такая её точка, касательная к кривой в которой имеет с ней соприкосновение, порядок которого не ниже трёх, и касательная разбивает кривую[1].

Условие смены знака ориентированной кривизны не равносильно разбиению кривой на вогнутую и выпуклую часть. Так, в случае точки возврата кривая может не иметь касательной. Для исключения этого вышеприведённых определениях требуется регулярность кривой. Более интересный случай — функция при при , которая в точке 0 касается оси x и пересекает её, но меняет знак вблизи нуля бесконечное число раз; здесь даже существует вторая непрерывная производная[3]. Для исключения такого случая требуют, чтобы функция имела изолированный экстремум (см. ниже).

Читайте также:  Помощь при открытом переломе костей предплечья

Точка кривой называется точкой распрямления, если кривизна кривой в этой точке равна нулю[4].
Иногда точку распрямления кривой, не являющуюся точкой перегиба этой кривой, называют параболической точкой распрямления[1].

Дифференцируемая функция имеет точку перегиба (x, f(x)) тогда и только тогда, когда её первая производная, f′, имеет изолированный экстремум в точке x (это не то же самое, что f имеет экстремум в этой точке). То есть в некоторой окрестности точки x имеется одна и только одна точка, в которой f′ имеет (локальный) минимум или максимум. Если все экстремумы функции f′ изолированы, то точка перегиба — это точка на графике f, в которой касательная пересекает кривую[5][6].

Высшей (вырожденной) вершиной регулярной кривой называется такая её точка, в которой соприкасающаяся окружность имеет с ней касание, порядок которого выше третьего[1].

Восходящая точка перегиба — это точка перегиба, где производная имеет локальный минимум, и нисходящая точка перегиба— это точка перегиба, где производная имеет локальный максимум.

Для алгебраической кривой несингулярная точка является точкой перегиба тогда и только тогда, когда кратность точки пересечения касательной с кривой нечётна и больше двух[7].

Свойства[править | править код]

Точка перегиба однозначно характеризуется двумя свойствами:

Если кривая задана как график дифференцируемой функции , точка перегиба является точкой экстремума для .

Необходимое и достаточное условия[править | править код]

График функции f(x) = sin(2x) от −π/4 до 5π/4. Заметьте, вторая производная функции f равна f″(x) = −4sin(2x). Касательная отражена синим цветом, где кривая выпукла (выше касательной), зелёным, где кривая вогнута (под касательной), и красным цветом в точках перегиба 0, π/2 и π

Если x является точкой перегиба для f, то вторая производная, f″(x), равна нулю, если существует, но это условие не является достаточным. Требуется, чтобы наименьший порядок ненулевой производной (выше второй) был нечётным (третья, пятая и т. д. производные). Если наименьший порядок ненулевой производной чётен, точка не является точкой перегиба, а является параболической точкой распрямления [8]. В алгебраической геометрии, однако, как точки перегиба, так и точки спрямления обычно называют точками перегиба.

Определение предполагает, что f имеет ненулевую производную более высокого порядка по x, которая не обязательно существует. Но если таковая существует, из определения следует, что знак f′(x) постоянен по обеим сторонам от x в окрестности точки x.

Достаточное условие точки перегиба:

1) Достаточным условием точки перегиба является:

Если f(x) k раз непрерывно дифференцируема в некоторой окрестности точки x, где k нечётно и k ≥ 3, f(n)(x0)=0 для n = 2,…,k — 1 и f(k)(x0) ≠ 0, то x0 является точкой перегиба f(x).

2) Другое достаточное условие требует, чтобы и имели разные знаки в окрестности точки x при условии, что в данной точке существует касательная[2].

Классификация точек перегиба[править | править код]

Точки перегиба можно классифицировать согласно производной f′(x).

  • если f′(x) равно нулю, точка является стационарной точкой перегиба
  • если f′(x) не равно нулю, точка является нестационарной точкой перегиба

y = x4 — x имеет вторую производную в точке (0,0), но она не является точкой перегиба, поскольку четвёртая производная является первым ненулевым порядком производной (третья производная равна нулю).

Примером седловой точки является точка (0,0) графика y = x3. Касательной служит ось x и она разделяет график в этой точке.

Нестационарные точки перегиба можно продемонстрировать графиком функции y = x3, если его чуть повернуть относительно начала координат. Касательная в начале координат всё ещё делит график на две части, но градиент не равен нулю.

Функции с разрывами[править | править код]

Некоторые функции меняют выпуклость/вогнутость в некоторой точке, но не имеют в этой точке перегиба. Вместо этого они могут менять кривизну при переходе вертикальной асимптоты или в точке разрыва. Возьмём, например, функцию 2x2/(x2 — 1). Она выпукла при |x| > 1 и вогнута при |x| < 1. Однако у этой функции нет точки перегиба, поскольку 1 и −1 не принадлежат области определения функции.

См. также[править | править код]

  • Критическая точка
  • Экологический порог[en]
  • Конфигурация Гессе образована девятью точками перегиба эллиптической кривой
  • Стрельчатая S-образная арка[en], архитектурная форма с точками перегиба
  • Вершина кривой, локальный минимум или максимум кривизны

Примечания[править | править код]

  1. 1 2 3 4 Шикин, 1997, с. 39.
  2. 1 2 Bronshtein, Semendyayev, 2005, с. 231.
  3. ↑ Фихтенгольц, 2001, с. 305.
  4. ↑ Шикин, 1997, с. 27.
  5. ↑ Фихтенгольц, 2001, с. 294—305.
  6. ↑ Кудрявцев, 1981, с. 190—195.
  7. ↑ Point of inflection. encyclopediaofmath.org.
  8. ↑ Рашевский, 1950, с. 18—19.

Литература[править | править код]

  • Е.В. Шикин, М.М. Франк-Каменецкий. Кривые на плоскости и в пространстве (справочник). — Москва: «ФАЗИС», 1997. — ISBN 5-7036-0027-8, ББК 22.15.
  • I.N. Bronshtein, K.A. Semendyayev, G. Musiol, H. Muehlig. Handbook of Mathematics. — 5. — Berlin, Heidelberg, New York: Springer, 2005. — ISBN 978-3-540-72121-5.
  • Л. Д. Кудрявцев. Гл. 1. Дифференциальное исчисление функций одного переменного // Математический анализ. — Москва: «Высшая школа», 1981. — Т. 1. — С. 190—195.
  • Г. М. Фихтенгольц. Гл. IV. Исследование функций с помощью производных // Курс дифференциального и интегрального исчисления. — 8-е. — М.: ФИЗМАТЛИТ, 2001. — Т. 1. — ISBN 5-9221-0156-0.
  • П. К. Рашевский. Курс дифференциальной геометрии. — Москва, Ленинград: Государственное издательство техническо-теоретической литературы, 1950.
  • Weisstein, Eric W. Inflection Point (англ.) на сайте Wolfram MathWorld.
  • Hazewinkel, Michiel, ed. (2001), Point of inflection, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
Читайте также:  Когда проходит боль после перелома ребер

Ссылки[править | править код]

  • Inflection Points of Fourth Degree Polynomials

Источник

Определение точки разрыва

Определение

Точка $a$, в которой нарушено хотя бы одно
из трех условий непрерывности функции, а именно:

  1. функция $f(x)$ определена в точке и ее окрестности;
  2. существует конечный предел функции $f(x)$
    в точке $a$;
  3. это предел равен значению функции в точке $a$,
    т.е. $lim _{x rightarrow a} f(x)=f(a)$

называется точкой разрыва функции.

Пример

Функция $y=sqrt{x}$ не определена в точке
$x=-1$, а значит, эта точка является точкой
разрыва указанной функции.

Точка разрыва первого рода

Определение

Если в точке $a$ существуют конечные
пределы $f(a-0)$ и
$f(a+0)$, такие, что
$f(a-0) neq f(a+0)$, то точка
$a$ называется точкой разрыва первого рода.

Пример

Функция $f(x)=left{begin{array}{l}{0, x>1} \ {1, x leq 1}end{array}right.$ в точке
$x=1$ имеет разрыв первого рода, так как

$f(1-0)=1$, а
$f(1+0)=0$

Точка разрыва второго рода

Определение

Если хотя б один из пределов $f(a-0)$ или
$f(a+0)$ не существует или равен бесконечности, то
точка $a$ называется точкой разрыва второго рода.

Пример

Для функции $y=frac{1}{x}$ точка
$x=0$ — точка разрыва второго рода, так как
$f(0-0)=-infty$ .

Точка устранимого разрыва

Определение

Если существуют
левый и правый пределы функции в точке и они равны друг другу, но не совпадают со значением
функции $f(x)$ в точке
$a$:
$f(a) neq f(a-0)=f(a+0)$ или функция
$f(x)$ не определена в точке
$a$, то точка
$a$ называется точкой устранимого разрыва.

Пример

Рассмотрим функцию $f(x)=left{begin{array}{l}{3 x+1, x0} \ {e^{2}, x=0}end{array}right.$ .
Найдем односторонние пределы и значение функции в точке $x=0$:

$f(0)=e^{2}$

$f(0-0)=lim _{x rightarrow 0-} f(x)=lim _{x rightarrow 0-}(3 x+1)=1$

$f(0+0)=lim _{x rightarrow 0+} f(x)=lim _{x rightarrow 0+}(1-4 x)=1$

Так как $f(0-0)=f(0+0)$ и не равны значению функции в
точке, то точка $x=0$ — точка устранимого разрыва.

Примеры решения задач

Пример

Задание. Исследовать функцию $f(x)=left{begin{array}{l}{x^{2}, x2}end{array}right.$ на непрерывность.

Решение. Рассматриваемая функция определена и
непрерывна на промежутках
$(-infty ; 1)$,
$(1 ; 2)$ и
$(2 ;+infty)$, на которых она задана непрерывными
элементарными функциями $y_{1}(x)=x^{2}$,
$y_{2}(x)=(x-1)^{2}$ и
$y_{3}(x)=3-x$ соответственно. А тогда, разрыв возможен
только на концах указанных промежутков, то есть в точках
$x=1$ и
$x=2$ .

Найдем односторонние пределы и значение функции в каждой из точек.

1) Рассмотрим точку $x=1$ . Для нее

$f(1)=left.(x-1)^{2}right|_{x=1}=0$

$f(1-0)=lim _{x rightarrow 1-} f(x)=lim _{x rightarrow 1-} y_{1}(x)=lim _{x rightarrow 1-} x^{2}=1$

$f(1+0)=lim _{x rightarrow 1+} f(x)=lim _{x rightarrow 1+} y_{2}(x)=lim _{x rightarrow 1+}(x-1)^{2}=0$

Так как $f(1-0) neq f(1+0)$ , то в точке
$x=1$ функция терпит разрыв первого рода.

2) Для точки $x=2$ имеем:

$f(2)=left.(x-1)^{2}right|_{x=2}=1$

$f(2-0)=lim _{x rightarrow 2-} f(x)=lim _{x rightarrow 2-} y_{2}(x)=lim _{x rightarrow 2-}(x-1)^{2}=1$

$f(2+0)=lim _{x rightarrow 2+} f(x)=lim _{x rightarrow 2+} y_{3}(x)=lim _{x rightarrow 2+}(3-x)=1$

Так как односторонние пределы и значение функции в этой точке равны, то это означает, что в точке
$x=2$ функция непрерывна.

Ответ. В точке $x=1$ функция
терпит разрыв первого рода, а в точке $x=2$ непрерывна.

Пример

Задание. Исследовать функцию $y=e^{frac{1}{x-1}}$
на непрерывность в точках $x_{1}=1$ и
$x_{2}=0$ .

Решение. 1) Исследуем функцию на
непрерывность в точке
$x_{1}=1$:

$f(1-0)=lim _{x rightarrow 1-} e^{frac{1}{x-1}}=e^{-infty}=0$

$f(1+0)=lim _{x rightarrow 1+} e^{frac{1}{x-1}}=e^{+infty}=infty$

Так как один из односторонних пределов бесконечен, то точка $x_{1}=1$
точка разрыва второго рода.

2) Для точки $x_{2}=0$ получаем:

$f(0-0)=lim _{x rightarrow 0-} e^{frac{1}{x-1}}=e^{-1}=frac{1}{e}$

$f(0+0)=lim _{x rightarrow 0+} e^{frac{1}{x-1}}=e^{-1}=frac{1}{e}$

и значение функции в точке

$f(0)=e^{frac{1}{x-1}}=frac{1}{e}$

Таким образом, в точке $x_{2}=0$ заданная
функция является непрерывной.

Ответ. $x_{1}=1$
— точка разрыва второго рода, а в точке $x_{2}=0$
функция непрерывна.

Читать дальше: основные теоремы о непрерывности функций.

Вы поняли, как решать? Нет?

Источник