Гвоздь при сложных переломах

Гвоздь при сложных переломах thumbnail

Изобретение относится к медицине, а именно к травматологии. Изобретение обеспечивает снижение травматизации медуллярной полости и исключает термический стресс в кости и костном мозге. Гвоздь имеет стержень (1) с идущим(и) вдоль по его длине одним или более камероподобными элементами расширения, в которых может быть увеличено давление путем использования жидкости или газа, чтобы элементы расширялись наружу в радиальном направлении. Несколько элементов расширения расположены вокруг основной секции и вытянуты по длине стержня. 2 с. и 5 з.п. ф-лы, 16 ил.

Изобретение относится к гвоздю для фиксации положения и формы сломанных длинных костей.

До настоящего времени для внутренней стабилизации сломанных длинных костей используются относительно большие стальные гвозди, имеющие заданное заранее U-образное или V-образное поперечное сечение. Гвозди стабилизируют кости в соответствии с принципом обеспечения поддержки в трех точках, а именно в начале, в конце и в средней секции гвоздя. Для того, чтобы расположить такие гвозди, через поверхность кости, а затем через медуллярную полость кости должны быть сделаны большие отверстия, совпадающие с диаметром имплантированного гвоздя. Этот способ имеет следующий недостаток: почти все медуллярные полости должны рассверливаться для того, чтобы сделать такое отверстие, и в результате, в частности, ухудшается снабжение кости кровью. Кроме того, из-за поддержки в трех точках, усилие передается через сравнительно малую область, и для обеспечения вращательной стабильности необходимо использовать дополнительные механизмы, такие как скрепляющие шурупы и т.п.

Удаление внутримедуллярного гвоздя после того, как кость срослась, также является процедурой, требующей сравнительно высокой степени усилий. Гвоздь заклинен в медуллярной полости и должен быть выбит из полости с использованием специальных инструментов и с приложением сравнительно больших усилий. Опять-таки в этом процессе медуллярная полость может испытывать значительные повреждения.

Из DE-C-32 01 056 известен внутримедуллярный гвоздь, в котором стержень состоит из полого корпуса, выполненного из сплава с памятью формы, который может принимать две возможные формы в зависимости от температуры. Затем, когда он уже установлен, внутримедуллярный гвоздь может быть преобразован из имеющего малое поперечное сечение в имеющий большое поперечное сечение, и наоборот. Недостаток этого существующего типа внутримедуллярного гвоздя заключается в том, что применение тепла, требуемого для расширения диаметра стержня гвоздя, также вызывает термический стресс в кости и в костном мозге.

Гвоздь в соответствии с ограничительной частью п.1 формулы изобретения известен из патента США 5102413. В этом известном гвозде единая расширяющаяся камера окружает основное тело гвоздя полностью.

Задачей настоящего изобретения является создание гвоздя для фиксации положения и формы сломанных длинных костей, который обеспечивает хорошую стабилизацию, может быть имплантирован без значительных повреждений в медуллярной полости и который также не создает никакого термического стресса в кости и костном мозге.

Эта задача решается в соответствии с изобретением с помощью гвоздя, имеющего характеристики, описанные в п. 1 формулы изобретения.

В соответствии с настоящим изобретением, гвоздь в нерасширенном состоянии, т. е. пока он еще имеет малый диаметр, может быть введен через сравнительно небольшой корковый канал внутрь медуллярной полости. Нет необходимости рассверливать медуллярную полость, повреждая тем самым большие ее секции. Когда гвоздь полностью имплантирован, поперечное сечение расширяется без применения тепла до требуемого размера в целях стабилизации сломанной кости. Поддерживающие усилия тогда распределяются по большой области. Вращательная стабильность также достигается через контакт поверхностей и через последующую адаптацию к данной форме медуллярной полости.

Поскольку увеличение поперечного сечения обратимо, как описано в п. 2 формулы изобретения, имплантант может быть удален способом, который особенно безопасен для тканей, когда кость срастается.

Дальнейшие выгодные выполнения изобретения являются предметом остальных зависимых пунктов формулы изобретения.

Предпочтительные выполнения изобретения теперь будут описаны на основе приложенных чертежей, которые показывают: фиг. 1 — выполнение гвоздя в соответствии с изобретением, показанного в продольном сечении; фиг. 2 — поперечное сечение по линии В-В на фиг.1; фиг. 3 — поперечное сечение по линии А-А на фиг.1; фиг. 4 — еще одно поперечное сечение по линии А-А с убранными и расширенными элементами расширения; фиг. 5 — поперечное сечение, соответствующее сечению на фиг. 4, другого выполнения основного сечения стержня и элементов расширения; фиг. 6 — поперечное сечение, соответствующее сечению на фиг. 4, другого выполнения основного сечения стержня и элементов расширения; фиг. 7 — поперечное сечение, соответствующее сечению на фиг. 4, выполнения, имеющего центральный элемент расширения, с ребрами жесткости, радиально выступающими в осевом направлении, прикрепленными снаружи; фиг. 8 — поперечное сечение, соответствующее сечению на фиг. 4, выполнения, одинакового с выполнением на фиг. 7, имеющего ребра жесткости, выполненные вместе с центральным элементом расширения в конфигурации, одинаковой с конфигурацией на фиг. 7; фиг. 9 — поперечное сечение, соответствующее сечению на фиг. 4, выполнения с элементами расширения, сложенными на нем в нерасширенном состоянии;
фиг. 10 — выполнение клапана в продольном сечении, использованного в головке гвоздя, показанного на фиг. 1;
фиг. 11 — вид, соответствующий виду на фиг. 10, выполнения, в котором головка гвоздя изготовлена как часть клапана;
фиг. 12 — выполнение, одинаковое с выполнением на фиг. 11, имеющее сферу вместо поршня как уплотняющее тело;
фиг. 13 — выполнение, имеющее пригодную для протыкания мембрану вместо клапана;
фиг. 14 — вид в изометрии гвоздя по фиг. 1;
фиг. 15а и 15b — выполнение гвоздя в соответствии с изобретением в продольном сечении и частичном виде сбоку соответственно с винтовым концом;
фиг. 16а и 16b — вид сбоку и вид спереди, со стороны винтового конца гвоздя, имеющего выступающие элементы на конце.

Гвоздь для длинных костей, как показано на фиг.1, содержит стержень 1, имеющий центральную основную секцию 2, выполненную предпочтительно из совместимого с тканями пластика. Эта основная секция 2 практически стабильна по своим размерам, но предпочтительно обладает определенной упругостью на изгиб. В выполнении, показанном здесь, она круглая в поперечном сечении и снабжена тремя канавками 3, идущими вдоль по длине и разнесенными на 120o друг от друга снаружи по окружности секции. В этих канавках установлены трубчатые (камероподобные) элементы 4 расширения, также предпочтительно выполненные из совместимого с тканями пластика, которые предпочтительно являются эластично расширяемыми в поперечном сечении. Таким образом, элементы 4 расширения расположены вокруг основной секции 2 и вытянуты по длине стержня 1. При отсутствии внутреннего давления элементы 4 расширения предпочтительно не выступают из внешнего контура основной секции 2. Головка 5 гвоздя выполнена как приемник для наполняющего и разгружающего клапана, как показано на фиг. 10, и снабжена соответствующей резьбой 6 для клапана. На конце гвоздя расположена концевая насадка 7, предпочтительно конической формы, для облегчения введения гвоздя. Насадка предпочтительно содержит металлический штырь 8, который виден при рентгеноскопии, облегчая введение гвоздя. Также возможно использование металлической полоски, тянущейся по всей длине гвоздя.

Читайте также:  Перелом позвоночника как фиксировать

Когда в элементах 4 расширения, каждый из которых имеет форму камеры, при нахождении их в кости создается внутреннее давление путем закачивания в них газа или жидкости — с медицинской точки зрения идеален физиологический раствор соли — они расширяются в радиальном направлении, как показано на фиг. 4, так что поперечное сечение стержня 1 гвоздя увеличивается по всей окружности. Формируется структура с формой примерно в виде звезды в поперечном сечении. Части, выступающие дальше всего, заполняют только часть описанного вокруг них поперечного сечения, так что остается достаточно пространства, в которое может быть перемещен костный мозг. На тип и размер области контакта с костью можно повлиять путем изменения поперечного сечения элементов расширения. Упругость на изгиб основной секции 2 и, таким образом, стержня 1 в целом позволяет стержню также следовать неровностям медуллярной полости и совместно с характером элементов расширения гарантирует однородный контакт с костью в продольном направлении.

Фиг. 5 показывает выполнение, в котором элементы расширения, сходные с камерами, имеют форму не гибких элементов, но сложенных элементов, которые в этом случае лежат в вогнутых канавках 3 в отсутствие давления.

Фиг. 6 показывает выполнение, в котором элементы расширения сложены в отсутствие давления, и когда они расширены для формирования формы треугольного поперечного сечения с закругленными концами.

Фиг. 7-9 показывают выполнение стержня 1 гвоздя, в котором центральная основная секция в виде, описанном выше, отсутствует. Вместо этого центральный элемент формируется расширяющимся или в состоянии отсутствия давления сложенным трубчатым элементом 4 расширения, расположенным вдоль продольной оси стержня 1. По окружности элемента 4 расширения сформированы вместе с ним или прикреплены к нему ребра 10, расположенные вдоль продольной оси стержня 1 и радиально выступающие наружу за элемент 4, причем упомянутые ребра стабильны по размерам и имеют требуемую упругость на изгиб. Когда на элементы 4 расширения не воздействуют давлением, ребра 10 расположены близко друг к другу и образуют стержень с малым поперечным сечением. Когда элемент 4 расширения наполняется газом или жидкостью, в особенности физиологическим раствором поваренной соли, расширенный в поперечном сечении элемент 4 расширения определяет поперечное сечение стержня гвоздя, и прикрепленные ребра 10, которые являются элементами, контактирующими с костью, продолжают обеспечивать жесткость стержня гвоздя.

Гвоздь имеет в своей головке 5 клапан для введения или удаления жидкости или газа с целью увеличения или уменьшения размера поперечного сечения стержня гвоздя. Для расширения стержня гвоздя, например, использован клапан в головке 5 гвоздя, как показано на фиг. 10. В выполнениях, показанных на фиг. 11 и 12, головка 5 гвоздя выполнена таким образом, что она сама является частью клапана. Тот же клапан также используется для устранения давления в элементе или элементах 4 расширения, т.е. для изъятия среды расширения, которой был(и) заполнен(ы) упомянутый(ые) элемент или элементы.

В особенно выгодном выполнении изобретения, как показано на фиг. 13, головка 5 гвоздя содержит только пригодную для протыкания мембрану 12 для полой иглы 14, посредством которой жидкость или газ могут быть закачаны внутрь для заполнения элементов расширения. Когда они расширены, полая игла 14 вынимается и пригодная для протыкания мембрана 12 автоматически герметизируется. Для удаления расширяющей жидкости, когда процесс срастания завершен, полая игла снова вводится через мембрану и жидкость снова удаляется. Таким образом элементы 4 расширения могут быть возвращены в нерасширенное состояние, когда гвоздь еще установлен в кости.

Фиг. 14 показывает вид в изометрии гвоздя в продольном сечении фиг. 1. Гвоздь имеет обычную длину от 25 до 35 см в соответствии с длиной бедренной кости.

Фиг. 15а и 15b показывают выполнение гвоздя, имеющего винтовой конец 16, который допускает специальное крепление гвоздя в кости, что осуществляется также приспособлением 18 с распорками, показанным в выполнении, проиллюстрированном на фиг. 16а и 16b.

В предпочтительной конструкции гвоздь выполнен из материала, который может рассасываться телом. Это делает ненужным удаление гвоздя после того, как срастание закончилось.

Формула изобретения

1. Гвоздь для фиксации положения и формы сломанных длинных костей, имеющий стержень (1) с центральной основной секцией (2) и камероподобный элемент (4) расширения, установленный в основной секции и вытянутый по длине стержня, причем в упомянутом элементе расширения посредством жидкости или газа может быть создано внутреннее давление, когда он находится в кости, что заставляет его расширяться в радиальном направлении, отличающийся тем, что несколько элементов (4) расширения расположены вокруг основной секции и вытянуты по длине стержня.

2. Гвоздь по п. 1, отличающийся тем, что элемент или элементы (4) расширения может(гут) быть возвращены в нерасширенное состояние, когда гвоздь еще установлен в кости.

Читайте также:  Чешется рука при переломе

3. Гвоздь по п. 1 или 2, отличающийся тем, что гвоздь имеет в своей головке клапан для введения или удаления жидкости или газа с целью увеличения или уменьшения размера поперечного сечения стержня гвоздя.

4. Гвоздь по п. 1 или 2, отличающийся тем, что гвоздь имеет в своей головке пригодную для протыкания мембрану (12) для введения полой иглы (14) с целью введения или удаления жидкости или газа.

5. Гвоздь по одному из предыдущих пунктов, отличающийся тем, что гвоздь имеет винтовой конец (16).

6. Гвоздь по одному из пп. 1-4, отличающийся тем, что гвоздь имеет конец с приспособлением (18) с распорками.

7. Гвоздь для фиксации положения и формы сломанных длинных костей, содержащий стержень (1), имеющий камероподобный элемент расширения, расположенный вдоль продольной оси стержня и выполненный с возможностью наполнения его внутренней полости и увеличения поперечного сечения в радиальном направлении путем подачи текучей среды внутрь указанного элемента расширения при размещении стержня в кости, отличающийся тем, что указанный элемент расширения содержит ребра (10), расположенные вдоль указанной продольной оси и радиально выступающие наружу за указанный элемент расширения.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16

Источник

Остеосинтез – это в современных условиях самый распространенный и эффективный метод лечения повреждений костей и суставов. Сейчас применяются разные его виды. Чаще всего такое лечение требуется для восстановления трубчатых костей конечностей. Раньше самым популярным методом лечения таких травм наряду с гипсованием было применение аппаратов чрескостной фиксации. Но они громоздкие и неудобные, кроме того, часто вызывают инфицирования раны. Поэтому сейчас для восстановления целостности трубчатых костей более эффективным считается интрамедуллярный остеосинтез.

Что такое остеосинтез

Для лечения повреждений костей сейчас все чаще используется не гипсование, а оперативное вмешательство. Операция остеосинтеза обеспечивает более эффективное и быстрое сращение костей. Заключается она в том, что костные отломки совмещаются и фиксируются металлическими конструкциями, штифтами, спицами или винтами. Остеосинтез в зависимости от способа наложения этих приспособлений может быть наружным и погружным.

Второй способ делится на интрамедуллярный остеосинтез – фиксацию кости с помощью стержней, вводимых в костномозговой канал, экстрамедуллярный, когда отломки совмещаются с помощью пластин и винтов, а также чрескостный – выполняемый специальными наружными аппаратами спицевой конструкции.

Характеристика метода

Впервые идея внутрикостной фиксации отломков была предложена немецким ученым Кушнером в 40-е годы XX века. Он впервые провел интрамедуллярный остеосинтез бедренной кости. Стержень, который он использовал, имел форму трилистника.

Но только к концу столетия методика интрамедуллярного остеосинтеза была развита и стала широко применяться. Были разработаны стержни и другие имплантаты для блокируемого остеосинтеза, которые позволяют прочно зафиксировать отломки костей. В зависимости от целей использования они различаются по форме, размеру и материалу. Некоторые штифты и стержни позволяют вводить их в кость без рассверливания канала, что снижает травматичность операции. Современные стержни для интрамедуллярного остеосинтеза имеют форму, повторяющую изгибы костного канала. Они имеют сложную конструкцию, позволяющую прочно фиксировать кость и препятствовать смещению отломков. Изготавливаются стержни из медицинской стали или сплавов титана.

Этот метод лишен многих недостатков и осложнений внешних конструкций. Сейчас он является самым эффективным способом лечения околосуставных переломов, повреждения трубчатых костей голени, бедра, плеча, а в некоторых случаях – даже суставов.

Конструкция для интрамедуллярного остеосинтеза
Техника интрамедуллярного остеосинтеза эффективна при околосуставных переломах конечностей

Показания и противопоказания к применению

Такую операцию проводят при закрытых переломах бедренной, плечевой, большеберцовой кости. Эти повреждения могут быть поперечными или косыми. Возможно применение такой операции при развитии ложного сустава из-за неправильного сращения кости. Если травма сопровождается повреждением мягких тканей, остеосинтез желательно отложить, так как велик риск инфицирования места перелома. В этом случае операцию выполнить сложнее, но она тоже будет эффективной.

Противопоказан интрамедуллярный остеосинтез только при сложных открытых переломах с обширным поражением мягких тканей, а также при наличии инфекционного заболевания кожи в том месте, где нужно вводить штифт. Не применяется такая операция у пациентов пожилого возраста, так как из-за дегенеративно-дистрофических изменений в костной ткани дополнительное введение металлических штифтов может вызвать осложнения.

Некоторые заболевания также могут стать препятствием для проведения интрамедуллярного остеосинтеза. Это артрозы в поздней стадии развития, артриты, болезни крови, гнойные инфекции. Детям операция не делается из-за малой ширины костного канала.

Виды

Интрамедуллярный остеосинтез относится к внутрикостной операции. При этом происходит репозиция отломков и их фиксация штифтом, стержнем или винтами. По способу введения этих конструкций в костный канал интрамедуллярный остеосинтез бывает закрытым и открытым.

Раньше чаще всего использовали открытый способ. Он характеризуется тем, что поврежденную область кости обнажают. Отломки сопоставляют вручную, а потом в костномозговой канал вводят специальный стержень, который будет их фиксировать. Но более эффективным является закрытый метод остеосинтеза. Для его проведения нужен только небольшой разрез. Через него посредством специального проводника в канал кости вводится стержень. Все это происходит под контролем рентгеновского аппарата.

Стержень в кости
При интрамедуллярном остеосинтезе в костномозговой канал вводится стержень

Штифты в канале могут устанавливаться свободно или с блокированием. В последнем случае их дополнительно укрепляют с двух сторон винтами. Если проводится остеосинтез без блокирования, это увеличивает нагрузку на костный мозг и повышает риск осложнений. Кроме того, такая фиксация не устойчива при косых и винтообразных переломах или при ротационных нагрузках. Поэтому более эффективно применение стержней с блокированием. Сейчас их выпускают уже с отверстиями для винтов. Такая операция не только прочно фиксирует даже множественные отломки, но не приводит к сдавливанию костного мозга, что сохраняет его кровоснабжение.

Читайте также:  Можно ли парится в бане при переломе позвоночника

Кроме того, операция различается по способу введения стержня. Он может вводиться с предварительным рассверливанием костномозгового канала, что приводит к его травмированию. Но в последнее время чаще всего применяют особые тонкие стержни, для которых не требуется дополнительно расширять канал.

Есть еще менее распространенные виды интрамедуллярного остеосинтеза. Отломки могут фиксироваться несколькими эластичными стержнями. В кость вводят один прямой и два изогнутых противоположно друг другу стержня. Их концы загибают. При этом способе гипсовая повязка не требуется. Еще один способ был предложен в 60-е годы XX века. Костномозговой канал заполняют кусками проволоки так, чтобы она плотно его заполнила. Считается, что этим способом можно выполнить более прочную фиксацию отломков.

При выборе вида остеосинтеза врач ориентируется на состояние больного, вид перелома, место его локализации и тяжесть сопутствующих поражений тканей.

Стержень для остеосинтеза
Для интрамедуллярного остеосинтеза применяются стержни разной конструкции

Открытый остеосинтез

Такая операция более распространена, так как она более простая и надежная. Но, как и любая другая операция, она сопровождается потерей крови и нарушением целостности мягких тканей. Поэтому после открытого интрамедуллярного остеосинтеза чаще бывают осложнения. Но преимуществом применения такого способа является возможность использования его в комплексном лечении совместно с различными аппаратами для чрескостной фиксации. Отдельно открытый интрамедуллярный остеосинтез сейчас применяют очень редко.

Во время операции обнажают область перелома и отломки костей сопоставляют вручную без применения аппаратов. Именно это и является преимуществом метода, особенно при наличии множества осколков. После сопоставления отломков их фиксируют стержнем. Стержень может вводиться одним из трех способов.

При прямом введении необходимо обнажить еще один участок кости выше перелома. В этом месте пробивают отверстие по ходу костномозгового канала и вводят в него гвоздь, с его помощью сопоставляя отломки. При ретроградном введении начинают с центрального отломка, сопоставляя его с остальными, постепенно забивая гвоздь в костномозговой канал. Возможно введение стержня по проводнику. В этом случае его также начинают с центрального отломка.

При интрамедуллярном остеосинтезе бедра обычно сопоставление отломков настолько прочное, что наложение гипса не требуется. Если же делается операция на голени, предплечье или плечевой кости, то заканчивается она обычно наложением гипсовой лангеты.

Закрытый остеосинтез

Этот метод сейчас считается самым эффективным и безопасным. После его проведения не остается следов. По сравнению с другими операциями остеосинтеза он имеет несколько преимуществ:

  • небольшое повреждение мягких тканей;
  • малая потеря крови;
  • стабильная фиксация костей без вмешательства в зону перелома;
  • непродолжительное время операции;
  • быстрое восстановление функций конечности;
  • отсутствие необходимости гипсования конечности;
  • возможность применять при остеопорозе.

Суть метода закрытого интрамедуллярного остеосинтеза в том, что через небольшой разрез в кость вводится штифт. Разрез делается вдали от места перелома, поэтому осложнения появляются редко. Предварительно с помощью специального аппарата делается репозиция отломков костей. Весь процесс операции контролируется с помощью рентгенографии.

Операция на кости
Операция закрытого интрамедуллярного остеосинтеза малотравматична и безопасна

В последнее время этот метод усовершенствовали. Штифты для фиксации имеют отверстия с каждого края. В них вводятся винты через кость, которые блокируют штифт и не дают ему и отломкам кости смещаться. Такой блокируемый остеосинтез обеспечивает более эффективное срастание кости и предотвращает осложнения. Ведь нагрузка при движении распределяется между костью и стержнем.

Фиксация места перелома с помощью этого метода настолько прочная, что уже на следующий день можно давать дозированную нагрузку на поврежденную конечность. Выполнение специальных упражнений стимулирует образование костной мозоли. Следовательно, кость срастается быстро и без осложнений.

Особенностью блокируемого интрамедуллярного остеосинтеза является его более высокая эффективность по сравнению с другими методами лечения. Он показан при сложных переломах, сочетанных травмах, при наличии множества осколков. Такая операция может применяться даже у тучных пациентов и больных с остеопорозом, так как штифты, фиксирующие кость, прочно крепятся в нескольких местах.

Осложнения

Негативные последствия интрамедуллярного остеосинтеза бывают редко. В основном они связаны с низким качеством стержней для фиксации, которые могут подвергаться коррозии или даже ломаться. Кроме того, введение инородного тела в костномозговой канал вызывает его сдавливание и нарушение кровоснабжения. Может произойти разрушение костного мозга, что вызовет жировую эмболию или даже шок. Кроме того, прямые стержни не всегда правильно сопоставляют отломки трубчатых костей, особенно тех, которые имеют изогнутую форму – большеберцовой, бедренной и лучевой.

Нога после операции
Обычно после такой операции восстановление происходит быстро, дозированную нагрузку на конечность можно давать почти сразу

Восстановление после операции

Двигаться после закрытого интрамедуллярного остеосинтеза пациенту разрешают уже через 1-2 дня. Даже при операции на голени можно ходить с опорой на костыли. В первые несколько дней возможна сильная боль в травмированной конечности, которую можно снимать обезболивающими препаратами. Показано применение физиотерапевтических процедур, которые ускорят заживление. Обязательно выполнять специальные упражнения, сначала под руководством врача, потом самостоятельно. Обычно восстановление занимает от 3 до 6 месяцев. Операция по удалению стержня еще менее травматична, чем сам остеосинтез.

Эффективность фиксации костей зависит от типа травмы и правильности выбранного врачом способа ее проведения. Лучше всего срастаются переломы с ровными краями и с малым количеством отломков. От вида стержня тоже зависит эффективность операции. Если он слишком толстый, могут быть осложнения из-за сдавливания спинного мозга. Очень тонкий стержень не обеспечивает прочной фиксации и даже может сломаться. Но сейчас такие врачебные ошибки встречаются редко, так как все этапы операции контролируются специальной аппаратурой, которая предусматривает все возможные негативные моменты.

В большинстве случаев отзывы пациентов об операции интрамедуллярного остеосинтеза положительные. Ведь она позволяет быстро вернуться к нормальной жизни после травмы, редко вызывает осложнения и переносится хорошо. А кость срастается намного лучше, чем при обычных способах лечения.

Источник